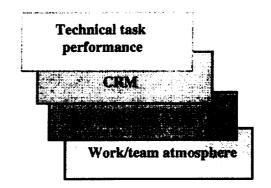
Royal Aeronautical Society Human Factors Group Communication & Co-ordination: How Good is the Team?

London Gatwick Airport, CAA Aviation House September 23, 1998

From Crew Communication to Co-ordination: A Fundamental Means to an End

Barbara G. Kanki NASA Ames Research Center MS 262-4, Moffett Field, CA 94035 bkanki@mail.arc.nasa.gov


Agenda

- **♦** What does Communication Accomplish?
- ♦ How are Communication Skills Used?
- **◆ Evaluating Crew Communication**
 - ullet in investigation
 - in research
 - in training
- ◆ Lessons Learned & Unresolved Issues

Communication accomplishes...

- **◆** Information transfer
- ◆ Team/task management
- Shared problem solving & decision making
- Establishment of the interpersonal climate

... which support outcomes

BGKanki NASA/ARC

September 23, 1998

page 3

$\label{prop:communication} \textbf{What does communication accomplish?}$

Information Transfer

- Communication serves to:
 → Request information
 - → Provide information
 - → Acknowledge/verify information

What does communication accomplish?

Team/task Management

- ◆ Teams/tasks are managed through communication:
 - → Standard operating procedures
 - → Planning, briefing, monitoring
 - → Maintaining situation awareness, task attention
 - → Setting task priorities, distribution of workload
- - Lack of shores
 - Inapyropelate 198
 - → Unbalanced distribution of workload

BCKinlo NASA/ARC

September 23, 1998

page 5

What does communication accomplish?

Problem Solving & Decision Making

- ◆ Communication facilitates shared problem solving
 - → Problem recognition
 - → Problem identification
 - → Decision making
 - → Critique & resolution
- Problem solving communication prevents:
 - → Lack of planning & preparation
 - Lack of joint problem solving
 - Lack of Alice
 - ... Inddennati

BGKanki NASA/ARC

September 23, 1998

page 6

What does communication accomplish?

Interpersonal "Climate"

- **♦** Communication establishes:
 - → Predictability, resource availability
 - + work preferences, attitudes
 - + competencies/skill level
 - → Work atmosphere, "setting the tone"

BGKanki NASA/ARC

September 23, 1998

page 7

How are Communication Skills Used?

- ◆ Communication is a multipurpose tool which supports team performance
 - + Technical task
 - + CRM
 - + Procedures & ATC
 - ♦ Work/team atmosphere
- ◆ Specific speech acts must be interpreted within the contexts in which they occur
 - + Physical Context
 - **→** Social & Organizational Context
 - **→** Task & Operational Context
 - **♦** Speech & Linguistic Context

How are Communication Skills Used?

Physical Context

- ◆ Aircraft states
 - → On the ground vs. inflight
 - → Automation mode
 - → Normal vs. abnormal
- **◆** Environment states
 - → Weather, noise, light, day/night
 - → Airspace location, traffic, terminal area
- **◆** Communication network
 - → Remote, face-to-face, media availability

Speech acts are interpreted within a physical context.

When speaking face-to-face, speech is often abbreviated because the communicators share the same situation. Similarly, daylight and good visibility conditions may require less explicit referencing.

BGKankt NASA/ARC

September 23, 1998

page 9

How are Communication Skills Used? Social & Organizational Context

- **♦** Communicators
 - → Within Cockpit
 - → Pilot ATC
 - → Pilot Dispatch/Mx
 - → Cockpit Cabin
- **◆** Crew composition
 - → Experience, skill
 - → Familiarity, diversity
- ◆ Roles and authority
 - → Captain First Officer
 - → ATC, cabin, others

Speech acts are interpreted within a social/org. context

Some speech patterns are strongly linked to the CA-FO authority structure (e.g., command-acknowledgement). Deviations may indicate imbalance in crew composition or simply a required deviation from normal operations.

BGKanki NASA/ARC September 23, 1998 page 10

How are Communication Skills Used?

Task & Operational Context

- Phase of flight & procedural context
 - → Taxi, Takeoff, Cruise
 - → Approach, Landing
- Normal vs. nonnormal operations
 - → Routine adjustments
 - → Inflight problems

Speech acts are interpreted within a task/operational context

Under *non-normal* conditions, communications which deviate from SOP's may be required for re-adjusting priorities and workload. Under *normal* conditions, the same deviations may indicate non standard practices.

BGKanki NASA/ARC

September 23, 1998

page 11

How are Communication Skills Used? Speech & Linguistic Context

- ◆ Individual styles
 - → Formality
 - → Communication rate
- Grammatical patterns
 - → Completed statements
 - → Non-standard English
- **♦** Speech Act patterns
 - → Question Answer
 - → Command -Acknowledgement
 - → Statement Verification
 - → Instruction Readback
 - → Readback Hearback

Speech acts are interpreted within a speech/linguistic context

Deviations from expected sequences may indicate:

- non-response, inattention, pre-occupation
- incomplete or interrupted communication

BGKanki NASA/ARC September 23, 1998 page 12

Evaluating Crew Communication

Investigation

- → Case study
- → Focus on causal and contributing factors
- → No scenario control
- → 100% validity

Research

- → Experiment groups compared
- → Factors of interest designed into the scenario
- → Many factors controlled & manipulated / support staff
- → Operational realism limited

Training

- → Training crew members, evaluating individuals
- → Performance requirements embedded into scenario
- → A few factors controlled & manipulated / limited staff
- → Operational realism limited

BGKanki NASA/ARC

September 23, 1998

page 13

Evaluating Crew Communication in Investigation

Speech Act Indicators.....of crew performance;

Task-related speech acts

- + Emergency problem solving
- + ATC, routine and non-routine

Procedural speech acts

Adherence to regulations & company procedures

Non-task related speech acts

- **♦** Evidence of conflict, tension
- ♣ Attention to task, situation awareness

of crew performance; contributing factors

Response to the emergency, problem solving

Adherence to procedures

Cockpit atmosphere, interpersonal climate

Investigation Example

NTSB-CVR transcript 30.5 min. routine flight, 25 sec. emergency CA. FO. ATC (Center, Approach) CA on radio, FO pilot flying

Task related speech acts

- Indicator of cooperative crew coordination during routine flight
- Indicator of inadequate problem solving during 25 sec. to resolve emergency

Procedural speech

• Indicator of general adherence to procedures and ATC protocol

Nontask-related speech

O Indicator of normal cockpit atmosphere

• Request for ATC/ATIS information followed by imm. response

FO-> CA 5 instances CA-> FO 1 instance

- Joint recognition of problem, but no identification of problem or stated plan within 25 seconds
- Adherence to SOP (checklists & ATC)
- Appropriate social conversation/responsiveness, return to task speech when appropriate

BGKanki NASA/ARC

September 23, 1998

page 15

Evaluating Crew Communication in Research

Speech Act Indicators......of crew performance;

Speech acts totals & ratio's Speech act sequences

+ question - answer

→ command - acknowledgment

Dysfluencies

incomplete speech

interrupted speech

repetitions

Non-verbal acts

differences across experiment conditions

Crew coordination strategies

Workload and workload distribution

Roles and procedures

BGKanki NASA/ARC September 23, 1998 page 16

Research Example

Full mission simulation 12 DC-9 crews, 10 MD88 crews Low vs. High level of automation Normal and abnormal flight conditions CA = pilot flying FO = pilot not flying

Speech acts totals, ratios and sequences (question-answer)

Indicator of information access and relevance to problem

Non-verbal acts (with visual access)

 Indicator of changes in work roles, workload

• In the MD88 scenario

- → more total speech acts
- → more CA questions
 - → seek information (vs. verify)
 - navigation & systems (vs. procedures)
- → more questions unanswered
- ..especially in the Abnormal phase

• In the MD88 scenario

- → CA = FO systems acts
- → CA > FO navigation acts

Traditionally, CA > FO systems acts

FO > CA navigation acts

BGKanki NASA/ARC

September 23, 1998

page 17

Evaluating Crew Communication in Training

Speech Act Indicators.....of crew performance;

Information transfer

♦ Discuss flight conditions

Team/task management

Set priorities, state plans & intentions, distribute work

Shared problem solving & d-m

+ State decisions, course of action

Establish interpersonal climate

♦ Solicit feedback & participation

individual evaluation

Technical training objectives

CRM training objectives

Adherence to procedures

Training Example

LOE Event Set Pre-departure through beginning of takeoff IAD ATIS 134.85

Event trigger = consideration of summer operations, low visibility, abnormal engine start, possible windshear Conditions: Aborted engine start, Congested ramps and taxiways in low visibility on taxi out

Ratings of pre-defined observable speech acts

- Indicator of primary CRM element, team management
- Indicator of quality of technical and CRM performance

Description of additional relevant speech acts

• Indicator of secondary CRM elements

Within Event Set 1,

- Crew discussion of complex departure partially observed
- ABOVE AVERAGE crew discussion of summer ops SOP
- CA completed STANDARD pre-flight briefing
- PF analyzed takeoff WX and requested takeoff alternate
- PNF verified PF intentions prior to taxi start

BGKanki NASA/ARC

September 23, 1998

page 19

Designing Scenario Event Sets

Interpretation and evaluation of communication is aided by designing and controlling the speech contexts

- Physical
 - → Consistent, realistic A/C and environment conditions and consequences
 - → Realistic communication media
- ◆ Social & Organizational
 - → Consistent roles and responsibilities
 - → Incorporation of communication network as needed

- Task & Operational
 - → Appropriate flight phases and procedures
 - → Realistic normal & nonnormal conditions surrounding "event triggers" "distracters" and supporting events
- ◆ Speech & Linguistic
 - → Appropriate interactive context for communicators

Lessons Learned

- Communication serves many functions
 - → Concrete operational definitions of communication will simplify the evaluation process
- Numerous ways to characterize speech: counts, ratio's, content, sequences, completeness
 - → But they must be interpreted in the context in which they occur

- Speech context determines interpretation
 - → Control the scenario/speech context so that speech acts can be consistently interpreted and evaluated
- "Words" alone do not constitute communication
 - → Consider the significance of interactive sequences, nonverbal actions, and the shared situation

BGKanki NASA/ARC September 23, 1998 page 21

Unresolved Issues

- → DEFINITIONS & EVALUATOR RELIABILITY:

 Because communication is a tool which cross-cuts
 numerous CRM skills, it is difficult to agree on
 standard definitions of communication skills across
 instructor/evaluators.
- → SCENARIO DESIGN: More systematic methods of scenario design and validation are needed so that behavioral options are controlled without degrading realism.
- → TRAINING IMPLEMENTATION: Inconsistent implementation of simulation training (e.g., scenario events, instructor interventions) degrade the reliability of performance evaluations

BGKanki NASA/ARC Soptember 23, 1998 page 22