Managing Fatigue-related Risk

It’s about sleep -stupid

Drew Dawson,
Centre for Sleep Research
University of South Australia
Cognitive effects of Fatigue

Naturalistic Decision Making Model

5 Dimensions of effect

[Petrilli, Lamond, Roach & Dawson, 2003]

- Situational Awareness
- Memory
- Simulation ability
- Performance insight
- Emotional Control
Fatigue and the Law

From Jiminez to Alcatraz

Drew Dawson,
Centre for Sleep Research
University of South Australia
Most people over-eat by 100% and over-sleep by 100% because they like to. That extra food and sleep makes them unhealthy and inefficient.

The person who sleeps 8-10h per day is never fully asleep and never fully awake. They have only different degrees of doze throughout the 24h day.

- Thomas Edison [1902]
Comparative Risk: Fatigue vs Alcohol

- Alcohol: Train, Sleep
- Placebo: Train, Sleep
- Fatigue: Train, Sleep, Sustained wakefulness

Time of Day:
- 1500
- 2300
- 0800
- 1400
Comparative Risk: Fatigue vs Alcohol

Cognitive Performance

Time of Day

Comparative Risk:
Fatigue vs Alcohol
Micro-economic ‘reforms’ in 90’s promoted a ‘conspiracy of greed’

Community concern over issue

OH&S reforms in 1990’s redefined fatigue as a workplace hazard

Parliamentary enquiry in 1999-2000 accelerated reform process
Shift away from ‘Jiminez’ decision i.e. not responsible for events if one has fallen asleep

Shift from ‘diminished capacity’ to ‘voluntary impairment’

Principle of ‘reasonable foreseeability’

Managerial and directorial accountability
Courts and juries increasingly view fatigue as a reasonably foreseeable voluntary risk similar to drugs and alcohol and therefore avoidable.

- Organisational Liability under Tort law
- Liability cannot be ‘outsourced’ to subcontractors
- Chain-of-responsibility can flow upward from organisation to customer
Fatigue identified as a specific workplace hazard

Organisations to implement a system to manage the hazard.

- Shared responsibility framework
 [duty of care]
- Risk-based framework
 [AS 4360]
- Safety Management System framework
 [AS 4801]
Community Response

General Public
- Public awareness programs focused on risk recognition for target groups

Workplaces
- Increased prescription
- Co-regulation
- Safety Management System approach
Mock Jury Studies

Goal is to understand legal and lay reasoning about attributions of liability for fatigue-related accidents

- Truck drivers
- Hospital doctors
Summary case arguments presented to

- mock juries of 6-12 people recruited from the community
- lawyers and judges
Mock Juries

- Type of policy
 - prescriptive
 - shared
 - responsibility

- Reason for violation
 - selfish
 - altruistic

- Forseeability
 - obvious
 - subtle
Liability

- Organisational liability maximised [60-90%] when
 - Coercive pressure to work
 - No shared responsibility framework
 - Sleep duration falls below 3-4 hrs

- Organisational liability minimised [20-50%] when
 - Individual violated shared responsibility model
 - Rationale was income maximisation
 - Sleep duration below 4hrs
Liability

Individual liability maximised [40-70%]
 - Violation of shared responsibility model
 - Rationale was income maximisation
 - Sleep duration fell below 3-4 hrs.

Individual liability minimised [10-50%] when
 - No employee responsibility model
 - Altruistic rationale [e.g. sick kids, breakdown]
 - Moderate sleep reduction 4-6 hrs
 ['there, for the grace of god go I']
Liability

<table>
<thead>
<tr>
<th>Policy type</th>
<th>Rationale</th>
<th>Forseeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescrip</td>
<td>Shared</td>
<td>Greed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employer</th>
<th>Prescrip</th>
<th>Shared</th>
<th>Greed</th>
<th>Altruism</th>
<th>Low</th>
<th>Hi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>🟥apeshed</td>
<td>🟥apeshed</td>
<td>🟥apeshed</td>
<td>🟥apeshed</td>
<td>🟥apeshed</td>
<td>🟥apeshed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individual</th>
<th>Prescrip</th>
<th>Shared</th>
<th>Greed</th>
<th>Altruism</th>
<th>Low</th>
<th>Hi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>🟥apeshed</td>
<td>🟥apeshed</td>
<td>🟥apeshed</td>
<td>🟥apeshed</td>
<td>🟥apeshed</td>
<td>🟥apeshed</td>
</tr>
</tbody>
</table>
Legal opinion

Not complete but early analysis suggests

- more polarised than juries
- ‘stricter’ view of liability
Fatigue is a ‘right-of-passage’ for health care workers. It can be a very different ‘rite-of-passage’ for patients.

For every complex problem there is a simple solution.... and it’s usually wrong.
Non-Prescriptive Safety Management System

Tight prescription
Few additional controls

Moderate Prescription
Some additional controls

Loose prescription
Significant additional controls

Tight prescription
Few additional controls

Alternate Compliance/SMS Model
Key Elements of a Fatigue Risk Management System

- Level of control should reflect the level of risk
- FRM policy document
- Training and Education program
- Auditable methodology to minimise fatigue-related risk
- Auditable methodology to ensure compliance
Risk: Determining Cost

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consequence</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td><$1K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><$10K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><$0.1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><$1M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><$10M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 >0.001/yr
2 >0.01/yr
3 >0.1/yr
4 >1/yr
5 >10/yr
Risk:

Ensuring a measured response

Workgroup schedule should be scored and the required degree of control determined

<table>
<thead>
<tr>
<th>ARC</th>
<th>Risk</th>
<th>1+ Controls required</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<10K$</td>
<td>Low</td>
<td>Few</td>
</tr>
<tr>
<td>$10-100K$</td>
<td>Medium</td>
<td>Some</td>
</tr>
<tr>
<td>$0.1-1M$</td>
<td>High</td>
<td>Lots</td>
</tr>
<tr>
<td>$>1M$</td>
<td>Extreme</td>
<td>All</td>
</tr>
</tbody>
</table>
Management is responsible for preventing excessive wakefulness at work and inadequate sleep opportunities between shifts.

Employees are responsible for using time between shifts to obtain sufficient sleep. Employee must notify company if this does not occur.

Management is responsible for providing clear guidelines on how to manage an insufficient sleep/excessive wake incident.
Training and Education

- Competency-based adult learning using Australian National Training Authority framework
- Three levels
 - All staff - Personal Fatigue Management Strategies [ANTA 1097B -Cert 2]
 - Line managers - Managing fatigue-related risk in the workplace [Cert 3/4]
 - Accountable Executive - Designing, implementing and evaluating an organisational FRMS [Cert 4]
- On-site, distance or web-based delivery of training available through Humantra [RTO]
SMS/Hazard Control Model

Audit:

1. Estimated Group Sleep History
 - Rules of rostering
 - 2-step fatigue modeling

2. Actual Individual Sleep history
 - Prior Sleep/Wake data
 - 1-step fatigue modeling

3. Behavioral Symptoms of Fatigue
 - Symptom checklists
 - Self-report behavioral scales
 - Physiological monitoring

4. Fatigue-related errors
 - Fatigue-proofing strategies
 - Error analysis system

5. Fatigue-related incidents
 - Incident analysis system
A self-regulating System

Level 1 Rostering rules or 2-step fatigue model

Level 2 Prior Sleep Wake data 1-step fatigue models

Level 3 Behavioural data

Level 4 Error Analysis

Level 5 Incident analysis
Fatigue Risk Management System Components

<table>
<thead>
<tr>
<th>Governance</th>
<th>Personnel</th>
<th>OH&S Committee item</th>
<th>Low</th>
<th>Mod</th>
<th>High</th>
<th>Ex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accountable Executive</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRM Committee</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Policy</td>
<td>Organisational Policy</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Work group policy</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Training and Education</td>
<td>Personal Management Strategies</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organisational Implementation Strategies</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design and Evaluation of an FRMS</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Risk Assessment</td>
<td>Likelihood Assessment</td>
<td>Prospective Analysis</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Retrospective Analysis</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aggregate PSW reports</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Individual PSW reports</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Behavioural Checklists</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Error reporting and analysis</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Consequence Assessment</td>
<td>Prospective</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Retrospective</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>
Level 1 Controls

Determining the average sleep history of the work group

- Qualitative: Rule sets
- Quantitative: Fatigue modeling
5 dimensions that indicate the level of fatigue associated with a roster

1. Hours per 7 days
2. Shift duration
3. Short break duration [work-sleep-work]
4. Hours of night work per 7 days [9pm-9am]
5. Long Break duration per 7 days [W-(NS-RDO-NS)n-W]
Fatigue likelihood Assessment

<table>
<thead>
<tr>
<th>No.</th>
<th>dimension</th>
<th>+0</th>
<th>+1</th>
<th>+2</th>
<th>+4</th>
<th>+8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Max hours per 7 days</td>
<td>≤ 36h</td>
<td>36-43h</td>
<td>44-47h</td>
<td>48-54h</td>
<td>55+</td>
</tr>
<tr>
<td>2.</td>
<td>Shift duration</td>
<td>≤ 8h</td>
<td>8-10h</td>
<td>10-12h</td>
<td>12-14h</td>
<td>≥14h</td>
</tr>
<tr>
<td>3.</td>
<td>‘Short break’ duration</td>
<td>≥16h</td>
<td>16-13h</td>
<td>12-10</td>
<td>10-8h</td>
<td>≤ 8h</td>
</tr>
<tr>
<td>4.</td>
<td>Max hours of night work per 7 days</td>
<td>0h</td>
<td>1-8h</td>
<td>8-16h</td>
<td>16-24h</td>
<td>≥24h</td>
</tr>
<tr>
<td>5.</td>
<td>‘Long break’ frequency</td>
<td>≥ 1/7d</td>
<td>≤ 1/7d</td>
<td>≤ 1/14d</td>
<td>≤ 1/21d</td>
<td>≤ 1/28d</td>
</tr>
</tbody>
</table>
The point score associated with an assessment of each of the 5 dimensions of the roster can be calculated and rated on the scale above. It may be possible to regulate that rosters with a FLS greater than X require controls beyond level 1.
Fatigue modeling

- estimates **average** fatigue based on
- **actual** sleep-wake data
- SW data **inferred** from Hours-of-work
- **significant potential** as risk management tool
- **poor** predictor of individual behavior
- should use **probabilistic** data

Level 1 Controls:

Estimating average sleep opportunity
Timing and duration of actual Sleep-Wake behaviour is used to calculate an index of fatigue

- Folkhard & Akerstedt
- Belenky & Hirsch
- Jewett & Kronauer
Timing and duration of work and non-work periods is used to infer sleep-wake behaviour and to predict an index of work-related fatigue.

- Folkhard & Akerstedt
- Belenky and Hirsch [SAFE-T]
- Dawson and Fletcher [FAID and PSWM]
Defining Compliance

Work Period

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
Audit model for a Specific Task

<table>
<thead>
<tr>
<th>Risk</th>
<th>Band</th>
<th>FAID ‘score’</th>
<th>Planned</th>
<th>Actual</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td><X</td>
<td><80</td>
<td>97.5%</td>
<td>95%</td>
<td>None unless evidence of a failure of a level 1+ control</td>
</tr>
<tr>
<td>Moderate</td>
<td>X-Y</td>
<td>80-100</td>
<td>98.75%</td>
<td>97.5%</td>
<td>Investigate and correct where moderate likelihood of re-occurence</td>
</tr>
<tr>
<td>High</td>
<td>>Y</td>
<td>100+</td>
<td>0%</td>
<td>98.75%</td>
<td>Investigate and report each non-compliance to regulator. Instigate CA immediately Report outcome/solution</td>
</tr>
</tbody>
</table>
System of Control

<table>
<thead>
<tr>
<th>Fatigue Risk Management System Components</th>
<th>Low</th>
<th>Mod</th>
<th>High</th>
<th>Ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH&S Committee item</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accountable Executive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRM Committee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisational Policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work group policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training and Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal Management Strategies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisational Implementation Strategies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and Evaluation of an FRMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prospective Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrospective Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate PSW reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual PSW reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavioural Checklists</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error reporting and analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incident reporting and analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consequence Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prospective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrospective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
As prior sleep decreases and prior wake increases the likelihood of fatigue [symptoms, errors and incidents] also increases. In general, X should be greater than threshold $[5]$, Y should be greater than threshold $[12]$ and Z should be less than Y.
Add 2 points for every hour of sleep below the 24 hour prior sleep threshold \[X\]

Add 1 point for every hour below the 48 hour prior sleep threshold \[Y\]

Add 1 point for every hour of work beyond the prior wake threshold \[Z\]

Sum and refer to decision tree to determine appropriate response
Agreed behavior in response to non-zero fatigue likelihood score

<table>
<thead>
<tr>
<th>Score</th>
<th>Agreed response</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Do nothing unless higher level [3+] hazards are present</td>
</tr>
<tr>
<td>a-b</td>
<td>Document locally with supervisor and undertake approved individual countermeasures. Self monitoring for symptoms, napping, strategic caffeine, team monitoring by colleagues, task rotation</td>
</tr>
<tr>
<td>c-d</td>
<td>Document externally by supervisor. Organise supervisory checks. Complete symptom checklist, task re-assignment</td>
</tr>
<tr>
<td>e+</td>
<td>Document externally, do not engage in any safety-critical behaviors, do not recommence until fit-for-work.</td>
</tr>
</tbody>
</table>
Level 3 controls: identifying impaired behavior

- Symptom Checklists
- Self-report scales
- Karolinska
- Stanford
- Sam Pirelli
Level 3 controls: identifying impaired behavior

- Physiological monitoring
- Visual Response Times
- Hand-eye co-ordination
- Eye blink rates
- Pupillometry
- Galvanic Skin Response
- Chin-chest measure
Level 4 and 5 controls: identifying errors and incidents

For fatigue to be a causal factor two conditions must hold:

- Corroborated evidence of a level 1-3 indicator of fatigue
- Nature of error consistent with F-rE
Overview of Industry Progress

<table>
<thead>
<tr>
<th>Industry</th>
<th>Prescription</th>
<th>Exemption</th>
<th>Alternate Compliance</th>
<th>FRMS</th>
<th>Union preference</th>
<th>Industry preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road</td>
<td>Yes</td>
<td>Modeling</td>
<td>No</td>
<td>No</td>
<td>Prescription</td>
<td>Alternate Compliance</td>
</tr>
<tr>
<td>Rail</td>
<td>Yes</td>
<td>No</td>
<td>Modeling</td>
<td>2005</td>
<td>Alternate Compliance</td>
<td>FRMS</td>
</tr>
<tr>
<td>Aviation</td>
<td>Finishing</td>
<td>No</td>
<td>Modeling</td>
<td>2006</td>
<td>FRMS</td>
<td>FRMS</td>
</tr>
<tr>
<td>Maritime</td>
<td>Yes</td>
<td>No</td>
<td>Modeling</td>
<td>2006</td>
<td>Prescription</td>
<td>FRMS</td>
</tr>
<tr>
<td>Health Care</td>
<td>Some</td>
<td>No</td>
<td>2006</td>
<td>No</td>
<td>Alternate Compliance</td>
<td>FRMS</td>
</tr>
<tr>
<td>Mining</td>
<td>Yes</td>
<td>IR-based</td>
<td>Soon</td>
<td>No</td>
<td>Prescription</td>
<td>Alternate Compliance</td>
</tr>
</tbody>
</table>
Medical Case Studies

Adverse medical events associated with long hours of work
These are the circumstances surrounding an adverse medical event that occurred several years ago in a major teaching hospital. The patient was a 35 year old woman who experienced a long and difficult labour. After several hours of unsuccessfully attempting to give birth she experienced third degree tears and was given a somewhat belated episiotomy. The child was delivered in good health without complications. Due to the delayed intervention in the labour, there were significant complications associated with the procedure and the peritoneal damage was so severe that the patient was operated on and a colostomy bag inserted. The woman still has the colostomy bag three years later.

The patient subsequently sought medico-legal opinions over the management of the case and several medical specialists indicated that the medical management of the case was not consistent with current best practice guidelines and, in their opinion, negligent with respect to the patients interests. In particular, they believed the decision to wait on the episiotomy was inappropriate and the patient should have received the episiotomy much earlier. According to the specialists this would have reduced the likelihood of complications.
At the time of the incident [0800h], the junior doctor was working on a labour ward in a large public hospital. The doctor was asked to cover several consultants during the Christmas-New Year period. They had all organised to be away during this period to be with their families. The Christmas-New Year break for the consultants was a long tradition going back several decades. Thus, there was a historical expectation that the junior doctor assigned to the unit would cover the consultants during this period. Junior doctors were usually quite happy to undertake such activities since many of them felt that it may enhance the possibility of entry into the specialist training program that commenced in February.

There were further additional factors that complicated staffing issues during the period. The acting-CNC on the ward was very junior since senior staff had requested and received leave during this period. Similarly, staffing levels for nursing care were low due to the current hospital policy of using agency and casual staff to supplement minimum staffing levels. Also, as is commonly known, sufficient numbers of agency staff are difficult to obtain at this time of year.
On this particular Christmas-New Year period there had been several quite complicated night-time deliveries across the week and normal workloads during the day. In the six days prior to the incident the junior doctor had worked about 95-100 hours. Discussions with the junior doctor indicated only about 2-3hrs of unbroken sleep per night for the first five nights and on the night prior to the incident had not received any sleep at all due to long and difficult labour from 1800h on the prior evening through to 0800h the following morning.

The doctor did not deny the hours worked or to being tired. The patient corroborated this suggesting that, in her opinion, the doctor was tired since the doctor had fallen asleep on several occasions while attending. The patient also alleged that, on one occasion, while listening to the foetus with a stethoscope, the doctor had fallen asleep on the patient’s stomach. The doctor did not deny this but could not recall it happening. Under cross-examination, the doctor had very poor recall of the specific event sequence for that evening.
Statements by the nursing staff further corroborated this. They indicated that the doctor had seemed irritable and distracted. In particular, they remarked that the doctor had forgotten several relatively simple tasks that evening. In addition, they had noticed the doctor asleep at the nurses station on several occasions earlier in the evening. The nurses indicated that this was not atypical in junior medical staff on the unit and related several stories of similar periods of extended on-call duty in other junior doctors with similar stories of long hours, inadvertent sleep onset and poor patient management.

Questions

Q.1. If you had been the doctor how would you have responded to the implication of liability?

Q.2. In your opinion, who should be considered liable for the adverse medical event described here? How would you apportion relative blame to the parties?

Q.3. Are such events reasonably preventable?

Q.4. In practical terms, how could such an event could be prevented from occurring again?
Life is an AME!!!!
Questions

drew.dawson@unisa.edu.au
www.unisa.edu.au\sleep
www.humantra.com
ph. 0438 329-766